這題事實上和上一題求   x^1/1! -  x^2/2! +.....  這題很像
只是這裡我用了和那題不同的技巧,
以往通常要算幾項是需要 n 去決定
這裡用到的一點小技巧是....

1. 算出第 n 項的答案為 tmp1
2. 第 n-1 項的答案為 tmp2,  |tmp2-tmp1|,檢查該誤差值是否夠小
3. 如果差值夠小的話,停下來,tmp1 即為所求,如果不夠小,tmp2=tmp1,進入下個回圈

於是,這裡必須定義一個可接受的誤差值(文中的 EPS),
如果 |tmp2-tmp1| < EPS, 代表算出來的值是可以接受的,
這時便可跳出回圈...

如果這個方法不是您所需要的,可以參考上一篇文章
x^1/1! -  x^2/2! +..... 

以下為原始碼.

// ============================================
// filename : Cos_func.cpp
// author   : edison.shih.
// date     : 2010.10.25
// complier : vc2008
//
// all rights reverse
// ============================================

#include <stdio.h>
#include <math.h>
#define EPS  1E-6
// cos(x) = 1- x^2/2! + x^4/4! - ....... x^n/n!
int main()
{
        double x;
        double n;
        double a, b;         // 分子,分母
        double tmp1, tmp2;   // 此項與上項答案
        double delta = 0.0 ; // 答案誤差
        double i, j;

        printf("input x:");
        scanf("%lf", &x);

        tmp1 = 1.0, tmp2=1.0; // n=0 時,cos(x)=1
        for(i=1.0; ; i=i+1.0){

                a = pow(x, 2*i); // a = x^2, x^4, ...

                // 2n!
                n = 1.0;
                for(j=1.0; j<=2*i; j=j+1.0) n = n*j;

                // b = (-1)^i * 2n!
                b = pow(-1.0, i) * n;

                tmp1 = tmp1 + a/b;               
                delta = fabs(tmp2 - tmp1);
                if(delta<EPS) break; // 誤差小於可接受範圍
                else tmp2 = tmp1;
        }
        printf("Cos(%lf)=%lf\n", x, tmp1);
       
        return 0;
}

創作者介紹
創作者 Edison 的頭像
Edison

藍影

Edison 發表在 痞客邦 留言(2) 人氣()


留言列表 (2)

發表留言
  • proync
  • 這個很難喔
    我看不懂呢
  • 老師您說笑了,這是大學微積分裡面對於 cos(x) 的另一定義,最後用C語言程式當作練習題將它實做出來而已 ^^

    Edison 於 2010/10/28 00:09 回覆

  • b3cru
  • ﹍jndiq2
    太○棒◎了﹉ 找﹍了○好♀久終於找到§硬□碟♀醫院幫我救§出□手﹉機﹌刪〇除♂照☆片與我的修~理﹂硬﹋碟﹎隨◎身☉硬碟p2u3ch2 NAS群輝QNAP專○救◎line的﹉對﹍話○記♀錄和聯絡人§簡□訊﹉v1m44gw8網﹌址◇【♂zzb.bz/1sc63】☆
    24小時自動跑~的﹂行﹋銷﹎軟◎體☉,您值得擁○有◎!﹉